dc.contributor.author | Barry, Michael J. J. | |
dc.date.accessioned | 2015-09-04T20:49:17Z | |
dc.date.available | 2015-09-04T20:49:17Z | |
dc.date.issued | 2015-07-06 | |
dc.identifier.citation | Barry, M.J.J. (2015) On a Question of Glasby, Praeger, and Xia, Communications in Algebra, 43:10, 4231-4246, DOI: 10.1080/00927872.2014.941470. | en_US |
dc.identifier.issn | 0092-7872 | |
dc.identifier.issn | 1532-4125 | |
dc.identifier.uri | http://hdl.handle.net/10456/38085 | |
dc.description.abstract | A Jordan partition λ(m, n, p) = (λ1, λ2, … , λ m ) is a partition of mn associated with the expression of a tensor V m ⊗ V n of indecomposable KG-modules into a sum of indecomposables, where K is a field of characteristic p and G a cyclic group of p-power order. It is standard if λ i = m + n − 2i + 1 for all i. We answer a recent question of Glasby, Praeger, and Xia who asked for necessary and sufficient conditions for λ(m, n, p) to be standard. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Taylor & Francis | en_US |
dc.relation.ispartof | Communications in Algebra | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1080/00927872.2014.941470 | en_US |
dc.rights | This is the Author's Original Manuscript of an article published by Taylor & Francis in Communications in Algebra on July 6, 2015, available online: http://wwww.tandfonline.com/10.1080/00927872.2014.941470. | en_US |
dc.subject | Jordan partition. | en_US |
dc.title | On a Question of Glasby, Praeger, and Xia | en_US |
dc.description.version | Preprint | en_US |
dc.contributor.department | Mathematics | en_US |
dc.citation.volume | 43 | en_US |
dc.citation.issue | 10 | en_US |
dc.citation.spage | 4231 | en_US |
dc.citation.epage | 4246 | en_US |
dc.identifier.doi | 10.1080/00927872.2014.941470 | |
dc.contributor.avlauthor | Barry, Michael J. J. | |