Show simple item record

dc.contributor.authorBarry, Michael J.
dc.date.accessioned2021-10-11T13:09:52Z
dc.date.available2021-10-11T13:09:52Z
dc.date.issued2021-01-11
dc.identifier.citationBARRY, M. (2021). A NEW ALGORITHM FOR DECOMPOSING MODULAR TENSOR PRODUCTS. Bulletin of the Australian Mathematical Society, 104(1), 94-107. doi:10.1017/S0004972720001379en_US
dc.identifier.issn0004-9727
dc.identifier.issn1755-1633
dc.identifier.urihttps://dspace.allegheny.edu/handle/10456/53962
dc.description.abstractLet p be a prime and let Jr denote a full r×r Jordan block matrix with eigenvalue 1 over a field F of characteristic p. For positive integers r and s with r≤s , the Jordan canonical form of the rs×rs matrix Jr⊗Js has the form Jλ1⊕Jλ2⊕⋯⊕Jλr . This decomposition determines a partition λ(r,s,p)=(λ1,λ2,…,λr) of rs . Let n1,…,nk be the multiplicities of the distinct parts of the partition and set c(r,s,p)=(n1,…,nk) . Then c(r,s,p) is a composition of r. We present a new bottom-up algorithm for computing c(r,s,p) and λ(r,s,p) directly from the base-p expansions for r and s.en_US
dc.language.isoen_USen_US
dc.publisherCambridge University Pressen_US
dc.relation.ispartofBulletin of the Australian Mathematical Societyen_US
dc.relation.isversionofhttps://www.cambridge.org/core/journals/bulletin-of-the-australian-mathematical-society/article/abs/new-algorithm-for-decomposing-modular-tensor-products/079B29EE6653FB34BB744E68B7A107EBen_US
dc.rightsAccepted for Publication. CC BY-NC-ND © 2020 Australian Mathematical Publishing Association Inc.en_US
dc.subjectIndecomposable representationen_US
dc.subjectTensor productsen_US
dc.titleA New Algorithm for Decomposing Modular Tensor Productsen_US
dc.contributor.departmentMathematicsen_US
dc.description.embargoThis version of the article is available for viewing to the public after July 11, 2021.en_US
dc.citation.volume104en_US
dc.citation.issue1en_US
dc.citation.spage94en_US
dc.citation.epage107en_US
dc.identifier.doi10.1017/S0004972720001379
dc.contributor.avlauthorBarry, Michael J.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record